<%server.execute "isdev.asp"%> Neuroblastoma presenting as opsoclonus-myoclonus: A series of six cases and review of literature Meena JP, Seth R, Chakrabarty B, Gulati S, Agrawala S, Naranje P - J Pediatr Neurosci
home : about us : ahead of print : current issue : archives search instructions : subscriptionLogin 
Users online: 2409      Small font sizeDefault font sizeIncrease font size Print this page Email this page

  Table of Contents    
Year : 2016  |  Volume : 11  |  Issue : 4  |  Page : 373-377

Neuroblastoma presenting as opsoclonus-myoclonus: A series of six cases and review of literature

1 Department of Pediatrics, All Institute of Medical Sciences, New Delhi, India
2 Department of Pediatric Surgery, All Institute of Medical Sciences, New Delhi, India
3 Department of Radiodiagnosis, All Institute of Medical Sciences, New Delhi, India

Date of Web Publication3-Feb-2017

Correspondence Address:
Jagdish P Meena
Department of Pediatrics, All India Institute of Medical Sciences, Room No. 3058, Teaching Block, New Delhi
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1817-1745.199462

Rights and Permissions



The opsoclonus-myoclonus ataxia syndrome (OMAS) also called “Kinsbourne syndrome” or “dancing eye syndrome” is a rare but serious disorder characterized by opsoclonus, myoclonus, and ataxia, along with extreme irritability and behavioural changes. Data on its epidemiology, clinical features, and outcome are limited worldwide. The aim of the study was to evaluate the clinical profile and outcome of children with OMAS. A retrospective data of all children presented to Pediatric oncology clinic with a diagnosis of opsoclonus-myoclonus from 2013 to 2016 were collected. 6 patients with a diagnosis of OMAS were presented over a 4-year period. All 6 cases had paraneoplastic etiology. All Children had good outcome without any relapse. Paraneoplastic opsoclonus myoclonus had a good outcome in our experience.

Keywords: Children, neuroblastoma, opsoclonus-myoclonus-ataxia syndrome, paraneoplastic syndrome

How to cite this article:
Meena JP, Seth R, Chakrabarty B, Gulati S, Agrawala S, Naranje P. Neuroblastoma presenting as opsoclonus-myoclonus: A series of six cases and review of literature. J Pediatr Neurosci 2016;11:373-7

How to cite this URL:
Meena JP, Seth R, Chakrabarty B, Gulati S, Agrawala S, Naranje P. Neuroblastoma presenting as opsoclonus-myoclonus: A series of six cases and review of literature. J Pediatr Neurosci [serial online] 2016 [cited 2023 Jan 30];11:373-7. Available from: https://www.pediatricneurosciences.com/text.asp?2016/11/4/373/199462

   Introduction Top

Opsoclonus-myoclonus-ataxia syndrome (OMAS), also called “Kinsbourne syndrome” or “dancing eye syndrome,” is a serious, rare, and often chronic neurological disorder. OMAS consists of three main symptoms: Opsoclonus (conjugate, multidirectional, chaotic eye movements), myoclonus (nonepileptic limb jerking that can also involve the head and face) and truncal ataxia, which cause gait imbalance. Sleep disturbance, cognitive dysfunction, and behavioral changes are often found.[1]

Age of onset is typically seen before 3 years of age. OMAS is generally a paraneoplastic or parainfectious entity, but in children, it is most commonly associated with occult neuroblastoma (NB) in about 50% of cases and between 2% and 3% of children with NB have OMAS.[2],[3] Although most patients with NB and OMAS have good survival rates, 70%–80% of these children will have long-term neurologic sequelae.[4],[5]

In pediatric age, OMAS may be associated with neuroblastic tumors (NB, ganglioneuroblastoma, or ganglioneuroma). Occasionally, it has been described with other entities as ovarian teratoma or hepatoblastoma.[6],[7]

The diagnosis of OMAS may be difficult in some patients and should be considered even when only some of the features are present. International consensus has described three of the following four diagnostic criteria should be present to describe the typical syndrome: (1) Opsoclonus, (2) myoclonus/ataxia, (3) behavioral change and/or sleep disturbance, and (4) NB.[8]

We present a retrospective study of five children presented to the pediatric oncology clinic (POC) of All India Institute of Medical Sciences (AIIMS) with a diagnosis of opsoclonus-myoclonus syndrome (OMS). The objective of this study was to describe the clinical profile and outcome of this disorder.

   Methods Top

The medical records of all children presented to POC, Department of Pediatrics, AIIMS, with a diagnosis of opsoclonus-myoclonus were retrieved and reviewed. Details of clinical symptoms, investigations, and treatment were recorded. The diagnosis of opsoclonus-myoclonus was based on a constellation of any three of the four clinical features: Opsoclonus, myoclonus, ataxia, and encephalopathy/irritability/behavioral change/sleep disturbance.[8] Outcome was assessed on follow-up by direct assessment and by telephonic communication (in one patient).

   Results Top

A total of six patients with a diagnosis of opsoclonus-myoclonus were admitted over 4-year period [Table 1]. The median age at clinical presentation was 34 months (range 22–36 months). The male:female ratio was 1:1. Before the onset of symptoms, all children had normal development. Opsoclonus, myoclonus, ataxia, and encephalopathy/behavioral abnormalities (irritability/sleep disturbance) were present in all children at presentation. All six children had symptoms of moderate to severe. The duration of symptoms at the time of presentation was in the range of 6–10 months.
Table 1: Clinical profi le and outcome in six children with opsoclonus-myoclonus syndrome

Click here to view

The reasons for the delay in diagnosis included misdiagnosis by peripheral physicians and delayed referral to our center.

All children had paraneoplastic opsoclonus-myoclonus (two left paravertebral ganglioneuroblastoma, two left paravertebral NB, one left paravertebral plus left psoas muscle ganglioneuroblastoma, and one right paravertebral ganglioneuroblastoma) [Figure 1],[Figure 2],[Figure 3]. Onset of OMAS preceded the diagnosis of malignant tumor in all cases. The diagnosis of tumor was made on contrast-enhanced computed tomography scan (CT) and magnetic resonance imaging (MRI) of the chest, abdomen, and pelvis (3 CT scan and 3 MRI). All children had normal abdominal ultrasound. Tests for urinary excretion of vanillylmandelic acid (VMA) were negative in all cases. Iodine-131 metaiodobenzylguanidine scintigraphy scan (I-131 MIBG) was performed in all cases, but it detected MIBG concentrating tumor only in two cases.
Figure 1: (Case 2) (Original) Axial section showing well-defined enhancing soft-tissue mass lesion (3.5 cm × 2 cm × 1.4 cm) seen in the left upper psoas muscle extending into left neural foramen in between L2 and L3 vertebra up to dura mater

Click here to view
Figure 2: (a and b) (Case 3) Axial section and coronal section showing right paravertebral mass of size 1.5 cm × 0.6 cm × 2.4 cm at the level of D6 to D8 vertebral body

Click here to view
Figure 3: (a and b) (Case 5) Axial and coronal section showing well-defined left paravertebral mass lesion 2 cm × 1.8 cm × 2.9 cm at the level of D6 to D8 vertebral body

Click here to view

An initial diagnosis of OMAS was made in all children. Three children received injection adrenocorticotropic hormone (ACTH); two children received injection ACTH plus injection methylprednisolone followed by oral steroids over 4 weeks. One child (case 1) also received intravenous immunoglobulin (IVIG) and oral clonazepam and risperidone in view of abnormal behavior (excessive irritability, biting, and head banging). All children had a good response and recovered completely by 4 weeks. One child (case 5) had spontaneous improvement and complete recovery without specific immunomodulator therapy.

Of the six cases with paraneoplastic OMS, four cases were treated with surgical resection of tumor and chemotherapy. In one child (case 5), treatment was deferred by parents but on telephonic communication that the child was symptoms free and healthy at 9 months after presentation to us. In another case (case 6), she received only injection ACTH, surgery, and chemotherapy were denied by parents. After follow-up of 24 months, the child was asymptomatic, but CT of the abdomen revealed mass of same size that was documented 2 years back. One child (case 3) died of febrile encephalopathy (not related to disease). All four cases that got proper treatment had normal development on follow-up. Two children (case 5 and case 6) had mild developmental delay.

   Discussion Top

OMS was first described by Marcel Kinsbourne in 1962.[9] Other names for OMS include OMAS, paraneoplastic opsoclonus-myoclonus ataxia, Kinsbourne syndrome, myoclonic encephalopathy of infants, dancing eyes-dancing feet syndrome, and dancing eyes syndrome.

In our study, all six children were between 2 and 3 years of age, similar to the trend seen in other reports, in which OMA was uncommonly diagnosed before 1 year of age.[10],[11] One possible explanation for the low incidence in infancy may be due to ability to develop specific antibodies is less in younger infants. We observed, alike to previously published studies, a similar median age at clinical presentation, acute/subacute onset of presentation, association of NB, and response to immunomodulator therapy.[12],[13]

We have found poor sensitivity of urine VMA in our case series with similar findings reported by Brunklaus et al.[14] We also observed poorer sensitivities for MIBG scintigraphy scan in contrast with the reported high sensitivity (up to 95%) for detection of NB as compared to an abdominal CT scan/MRI.

In adults, OMS is seen in relation to malignancies of the breast and lung (small cell carcinoma), in association with antibodies which are directed against an RNA binding antigen from the anti-Hu antibody.[15] This antibody is not found in children in OMS of NB. In children, NB which presents with OMS is more mature, shows a favorable histology, and absence of N-myc oncogene amplification than tumors which occur without symptoms of OMS.[16]

OMS, the most frequent paraneoplastic syndrome in pediatric age group, remains a challenge for treatment. Various immunomodulatory therapies have been used including steroids, IVIG, cyclophosphamide, and more recently, rituximab.[17]

Patients with NB and OMA have been reported to have excellent survival.[5],[10],[11] According to Children's Cancer Group data, the 3-year survival rate for children with nonmetastatic NB and OMA was 100% (reported from 675 patients who were diagnosed between 1980 and 1994) in compared to 77% in non-OMA.[3]

Singhi et al. described a case series of 11 patients (largest case series from India) with a diagnosis of opsoclonus-myoclonus (of the 11, 4 had paraneoplastic etiology) and concluded that children with paraneoplastic opsoclonus had more relapses and had a poor outcome as compared to an idiopathic group.[18] In contrast to study of Singhi et al., in our series, all six children had paraneoplastic OMS, and all had good outcome. This tumor is known to have spontaneous regression. Our one child (case 5) had spontaneous symptomatic resolution, and another child (case 6) is doing well without surgery and chemotherapy.

We have seen a good therapeutic response with immunomodulators, including ACTH, IVIG, and corticosteroids. Because of the small number of patients, it is difficult to compare these therapies. No one had relapse in our series contradicting to those reported by Tate et al. (up to 52%)[13] could be due to the small number of patients in our study.

In most children with NB, the characteristic feature is the response of this syndrome to corticosteroids and ACTH and the resolution of the neurological signs when the NB is treated. Children often develop lifelong neurologic sequelae that impair motor, cognitive, language, and behavioral developments.[3] Papero et al. observed that in older children, late effects are less likely seen because basic motor and cognition have already been formed.[19] Rudnick et al. reported that children with more advanced stage disease had better outcomes with regard to neurologic sequelae. One possible explanation for this association may be that patients with advanced stage disease require more intensive therapy that usually includes chemotherapy.[3] Russo et al. suggested that chemotherapy may improve neurologic outcome in children with OMA and NB, possibly due to its immunosuppressive effects.[5] In our study, five children with OMS responded with ACTH and steroids; one child recovered spontaneously. Two children had neurodevelopment deficits (mild developmental delay). The outcome was good in our all children, whereas in the study by Tate et al., the outcome was independent of etiology. Other studies [3],[18],[20] have also observed better outcome of idiopathic opsoclonus-myoclonus. We did not observe progressive developmental and behavioral problems in our patients, which could be due to small number of patients and short follow-up.

   Conclusion Top

OMS is a rare disorder, but it affects children more frequently than adults and exhibits an excellent rate of survival. Screening for an occult NB is necessary in all children with this syndrome. I-131 MIBG scan and urinary VMA have poor sensitivity. OMS (paraneoplastic) had a good outcome without significant neurological deficits in our experience.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

   References Top

Digre KB. Opsoclonus in adults. Report of three cases and review of the literature. Arch Neurol 1986;43:1165-75.  Back to cited text no. 1
Pranzatelli MR. The neurobiology of the opsoclonus-myoclonus syndrome. Clin Neuropharmacol 1992;15:186-228.  Back to cited text no. 2
Rudnick E, Khakoo Y, Antunes NL, Seeger RC, Brodeur GM, Shimada H, et al. Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: Clinical outcome and antineuronal antibodies-a report from the children's cancer group study. Med Pediatr Oncol 2001;36:612-22.  Back to cited text no. 3
De Grandis E, Parodi S, Conte M, Angelini P, Battaglia F, Gandolfo C, et al. Long-term follow-up of neuroblastoma-associated opsoclonus-myoclonus-ataxia syndrome. Neuropediatrics 2009;40:103-11.  Back to cited text no. 4
Russo C, Cohn SL, Petruzzi MJ, de Alarcon PA. Long-term neurologic outcome in children with opsoclonus-myoclonus associated with neuroblastoma: A report from the Pediatric Oncology Group. Med Pediatr Oncol 1997;28:284-8.  Back to cited text no. 5
Fitzpatrick AS, Gray OM, McConville J, McDonnell GV. Opsoclonus-myoclonus syndrome associated with benign ovarian teratoma. Neurology 2008;70:1292-3.  Back to cited text no. 6
Sahu JK, Prasad K The opsoclonus-myoclonus syndrome. Pract Neurol 2011;11:160-6.  Back to cited text no. 7
Matthay KK, Blaes F, Hero B, Plantaz D, De Alarcon P, Mitchell WG, et al. Opsoclonus myoclonus syndrome in neuroblastoma a report from a workshop on the dancing eyes syndrome at the advances in neuroblastoma meeting in Genoa, Italy, 2004. Cancer Lett 2005;228:275-82.  Back to cited text no. 8
Kinsbourne M. Myoclonic encephalopathy of infants. J Neurol Neurosurg Psychiatry 1962;25:271-6.  Back to cited text no. 9
Altman AJ, Baehner RL. Favorable prognosis for survival in children with coincident opso-myoclonus and neuroblastoma. Cancer 1976;37:846-52.  Back to cited text no. 10
Koh PS, Raffensperger JG, Berry S, Larsen MB, Johnstone HS, Chou P, et al. Long-term outcome in children with opsoclonus-myoclonus and ataxia and coincident neuroblastoma. J Pediatr 1994;125(5 Pt 1):712-6.  Back to cited text no. 11
Pang KK, de Sousa C, Lang B, Pike MG. A prospective study of the presentation and management of dancing eye syndrome/opsoclonus-myoclonus syndrome in the United Kingdom. Eur J Paediatr Neurol 2010;14:156-61.  Back to cited text no. 12
Tate ED, Allison TJ, Pranzatelli MR, Verhulst SJ. Neuroepidemiologic trends in 105 US cases of pediatric opsoclonus-myoclonus syndrome. J Pediatr Oncol Nurs 2005;22:8-19.  Back to cited text no. 13
Brunklaus A, Pohl K, Zuberi SM, de Sousa C. Investigating neuroblastoma in childhood opsoclonus-myoclonus syndrome. Arch Dis Child 2012;97:461-3.  Back to cited text no. 14
Dropcho EJ. Paraneoplastic Opsoclonus in Adults. Clinical Summary. MedLink Corporation. Available from: http://www.medlink.com/medlinkcontent.asp. [Last retrieved on 2012 May 18].  Back to cited text no. 15
Cooper R, Khakoo Y, Matthay KK, Lukens JN, Seeger RC, Stram DO, et al. Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: Histopathologic features-a report from the children's cancer group. Med Pediatr Oncol 2001;36:623-9.  Back to cited text no. 16
Krug P, Schleiermacher G, Michon J, Valteau-Couanet D, Brisse H, Peuchmaur M, et al. Opsoclonus-myoclonus in children associated or not with neuroblastoma. Eur J Paediatr Neurol 2010;14:400-9.  Back to cited text no. 17
Singhi P, Sahu JK, Sarkar J, Bansal D. Clinical profile and outcome of children with opsoclonus-myoclonus syndrome. J Child Neurol 2014;29:58-61.  Back to cited text no. 18
Papero PH, Pranzatelli MR, Margolis LJ, Tate E, Wilson LA, Glass P. Neurobehavioral and psychosocial functioning of children with opsoclonus-myoclonus syndrome. Dev Med Child Neurol 1995;37:915-32.  Back to cited text no. 19
Bataller L, Graus F, Saiz A, Vilchez JJ; Spanish Opsoclonus-Myoclonus Study Group. Clinical outcome in adult onset idiopathic or paraneoplastic opsoclonus-myoclonus. Brain 2001;124(Pt 2):437-43.  Back to cited text no. 20


  [Figure 1], [Figure 2], [Figure 3]

  [Table 1]

This article has been cited by
1 Multiple approaches to repurposing drugs for neuroblastoma
Laura Rank, Ana C. Puhl, Tammy M. Havener, Edward Anderson, Daniel H. Foil, Kimberley M. Zorn, Natalia Monakhova, Olga Riabova, Anthony J. Hickey, Vadim Makarov, Sean Ekins
Bioorganic & Medicinal Chemistry. 2022; 73: 117043
[Pubmed] | [DOI]
2 Profile and Outcome of Children with Opsoclonus Myoclonus Ataxia: A Tertiary Care Hospital Experience from India
Bidisha Banerjee, Ayesha Thanvi, Sameeta M. Prabhu
Journal of Pediatric Neurology. 2022;
[Pubmed] | [DOI]
3 Presence of identical B-cell clone in both cerebrospinal fluid and tumor tissue in a patient with opsoclonus–myoclonus syndrome associated with neuroblastoma
Kazuhiro Noguchi, Yasuhiro Ikawa, Mika Takenaka, Yuta Sakai, Toshihiro Fujiki, Rie Kuroda, Hiroko Ikeda, Satoko Nakada, Kozo Nomura, Seisho Sakai, Masaki Fukuda, Raita Araki, Yukitoshi Takahashi, Taizo Wada
Pediatric Hematology and Oncology. 2022; : 1
[Pubmed] | [DOI]
4 Neuroblastoma-associated Opsoclonous Myoclonous Ataxia Syndrome: Profile and Outcome Report on 15 Egyptian Patients
Hossam Elzomor, Salma El Menawi, Heba Elawady, Naglaa Elkinaai, Maged Elshafie, Amal Refaat, Hany Ghareeb, Mohamed Fawzy
Journal of Pediatric Hematology/Oncology. 2022; Publish Ah
[Pubmed] | [DOI]
5 Ophthalmologic Manifestations of Neuroblastoma: A Systemic Review
Katarzyna Kuchalska, Katarzyna Derwich, Anna Gotz-Wieckowska
Journal of Pediatric Hematology/Oncology. 2022; Publish Ah
[Pubmed] | [DOI]
6 Síndrome de opsoclonia mioclonia idiopático: Reporte de caso en una paciente de 13 meses
María José Daniels-García, Liliana Patricia Molinares-Núñez, Nelson Armando Muñoz-Álvarez, Katherine Barrios-Redondo
Revista Médicas UIS. 2022; 35(2)
[Pubmed] | [DOI]
7 Etiological Factors of Opsoclonus Myoclonus Ataxia Syndrome: A Single Center Experience with Eight Children
Veysel Gök, Gülsüm Gümüs, Habibe Selver Durmus, Ekrem Ünal, Hakan Gümüs, Musa Karakükcü, Ayse Kaçar Bayram, Hüseyin Per
Trends in Pediatrics. 2022; 3(4): 120
[Pubmed] | [DOI]
8 ZSCAN1 Autoantibodies Are Associated with Pediatric Paraneoplastic ROHHAD
Caleigh Mandel-Brehm, Leslie A. Benson, Baouyen Tran, Andrew F. Kung, Sabrina A. Mann, Sara E. Vazquez, Hanna Retallack, Hannah A. Sample, Kelsey C. Zorn, Lillian M. Khan, Lauren M. Kerr, Patrick L. McAlpine, Lichao Zhang, Frank McCarthy, Joshua E. Elias, Umakanth Katwa, Christina M. Astley, Stuart Tomko, Josep Dalmau, William W. Seeley, Samuel J. Pleasure, Michael R. Wilson, Mark P. Gorman, Joseph L. DeRisi
Annals of Neurology. 2022;
[Pubmed] | [DOI]
9 Incidence and Prognostic Role of the Ocular Manifestations of Neuroblastoma in Children
Sybille Graef, Meredith S. Irwin, Michael J. Wan
American Journal of Ophthalmology. 2020; 213: 145
[Pubmed] | [DOI]
10 Immune-Mediated CNS Diseases: a Review
Allen D. DeSena
Current Physical Medicine and Rehabilitation Reports. 2017; 5(3): 134
[Pubmed] | [DOI]


Print this article  Email this article
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (551 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  

    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded195    
    Comments [Add]    
    Cited by others 10    

Recommend this journal