home : about us : ahead of print : current issue : archives search instructions : subscriptionLogin 
Users online: 580      Small font sizeDefault font sizeIncrease font size Print this page Email this page
Year : 2019  |  Volume : 14  |  Issue : 2  |  Page : 65-69

Functional and radiological parameters to assess outcome of endoscopic third ventriculostomy in shunt failure patients

1 Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
2 Department of Pediatric Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
3 Department of Neurosurgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
4 Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India

Correspondence Address:
Dr. Monika Bawa
Department of Pediatric Surgery, Advanced Pediatric Center, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012.
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jpn.JPN_31_19

Rights and Permissions

Background: Placement of ventriculoperitoneal shunt is a standard treatment for hydrocephalus. The risk of shunt malfunction in the first year is 25%–40% making endoscopic third ventriculostomy (ETV) a feasible option in those patients with shunt failure. Aim: The aim of this study was to evaluate ETV as a viable option in patients with shunt malfunction and to correlate the clinical outcome following successful ETV with functional and radiological outcomes. Materials and Methods: All patients who underwent ETV as a diversion procedure for hydrocephalus following shunt failure or malfunction over 1 year were studied. Functional outcome was evaluated by Wee function independence measure score carried out preoperatively, postoperatively, and at 6-month follow-up. Similar comparison was carried out for radiological parameters such as effacement of gyri, periventricular lucency, frontal horn diameter (maximum), Evans’ index, and third ventricular diameter. Results: Of 15 patients, 61.5% were shunt free after ETV. All the failures were noted in the first month following the procedure. The factors, which showed statistically significant correlation with the outcome of ETV, included age (P = 0.030), preoperative functional score (P = 0.006), and all the three components of the functional scoring, namely self-care score (P = 0.087), motor control score (P = 0.035), and neurocognitive score (P = 0.003). Parameters such as Evans’ index, maximum frontal horn diameter, and third ventricular diameter showed no significant difference between preoperative and postoperative scans. In follow-up imaging, only the frontal horn diameter showed a significant improvement (P = 0.047). Conclusion: ETV leads to significant neurocognitive improvement and postoperative functional status making it a viable option in patients who present with shunt malfunction.


Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded77    
    Comments [Add]    
    Cited by others 2    

Recommend this journal