<%server.execute "isdev.asp"%> KLHL40 mutation associated with severe nemaline myopathy, fetal akinesia, and cleft palate Avasthi KK, Agarwal S, Panigrahi I - J Pediatr Neurosci
home : about us : ahead of print : current issue : archives search instructions : subscriptionLogin 
Users online: 428      Small font sizeDefault font sizeIncrease font size Print this page Email this page

  Table of Contents    
Year : 2019  |  Volume : 14  |  Issue : 4  |  Page : 222-224

KLHL40 mutation associated with severe nemaline myopathy, fetal akinesia, and cleft palate

1 Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
2 Genetic and Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre (APC), Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India

Date of Submission30-Apr-2019
Date of Acceptance04-Sep-2019
Date of Web Publication05-Dec-2019

Correspondence Address:
Dr. Inusha Panigrahi
Genetic and Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre (APC), Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012.
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jpn.JPN_60_19

Rights and Permissions



The congenital myopathies are a heterogeneous group of inherited neuromuscular disorders characterized by early-onset muscular weakness, hypotonia, and developmental delay. The congenital myopathies are further classified into centranuclear myopathies, nemaline myopathies, core myopathies, and congenital fiber-type disproportion based on major pathological features found in muscle biopsies. There is no evidence at present to show that cleft palate is associated with severe nemaline myopathies and fetal akinesia. The results of our study suggest that KLHL40 mutation associated with Cleft palate, nemaline myopathy and fetal akinesia.

Keywords: Clinical exome sequencing, congenital myopathy, KLHL40, nemaline myopathy

How to cite this article:
Avasthi KK, Agarwal S, Panigrahi I. KLHL40 mutation associated with severe nemaline myopathy, fetal akinesia, and cleft palate. J Pediatr Neurosci 2019;14:222-4

How to cite this URL:
Avasthi KK, Agarwal S, Panigrahi I. KLHL40 mutation associated with severe nemaline myopathy, fetal akinesia, and cleft palate. J Pediatr Neurosci [serial online] 2019 [cited 2023 Feb 3];14:222-4. Available from: https://www.pediatricneurosciences.com/text.asp?2019/14/4/222/272362

   Introduction Top

The congenital myopathies can have variable presentations such as hypotonia, delayed ambulation, and severe cases––fetal akinesia, polyhydramnios, and hydrops. There are several genes causing congenital myopathy. The most common are central core, nemaline, and congenital fiber-type disproportion. Nemaline myopathy is caused by mutations in ten genes Such as LMOD3, NEBULIN, TPM3, ACTA1, TNNT1 and KLHL40 etc. KLHL40 is also known as KBTBD5 (KELCH repeat and BTB/POZ domaincontaining protein 5) and the function of the gene is unknown.

The other symptoms may include contracture swallowing, feeding difficulties, facial weakness and respiratory failure. In this report, we describe cause of fetal presentation with akinesia, polyhydramnios and cleft palate.

The congenital myopathies refer to a clinically and genetically heterogeneous group of inherited skeletal muscle diseases associated with early infantile or childhood onset of motor weakness, developmental delay, and hypotonia, which have a static or slowly progressive course.[1] Pathologically, congenital myopathies have characteristic but not pathognomonic morphological features such as the presence of nuclear centralization, focal myofibrillar disorganization, and protein aggregation.[2], [3] The three main categories of classical congenital myopathies are as follows: (1) centronuclear or myotubular pyopathies that are defined by the presence of internally located myonuclei, (2) core myopathies that have focidevoid of oxidative enzymes in myofibers, and (3) nemaline myopathies that are marked by the presence of electron-dense nemaline bodies or rods within myofibres.[4]

   Methods and Results Top

Clinical evaluation

Mother came to genetic OPD with abnormal sonographic findings for genetic counseling in the antenatal period. The level-II ultrasonography showed polyhydramnios, decreased fetal movements, cleft palate, and skin edema suggesting of hydrops. Keeping a possibility of fetal akinesia deformation sequence, mutation analysis was performed by targeted exome sequencing to cover conditions such as congenital myopathy, Costello syndrome, and Neu–Laxova syndrome.

Genetic analysis and clinical exome sequencing

The parents of the patients gave written signed consent for blood sample collection. Genomic DNA was extracted by standard protocol (Qiagen kit). Clinical exome sequencing (Illumina platform, USA) was performed in patient’s DNA sample and sequencing data were analyzed for sequence variant and identified variant validation was carried out by Sanger sequencing method.

Variant description

A homozygous nonsense variant in exon 1 of the KLHL40 gene (chr3:42727712G>A: depth 53×) that results in a stop codon and premature truncation of the protein at codon 201 (p.Trp201Ter; ENST000003297777) was detected. The observed variation has previously been reported in patient with nemaline myopathy.[5] The Trp201Ter variant has not been reported in the 1000 genome database and has a minor allele frequency of 0.008% and 0.01% in the ExAC database. The in silico prediction of the variant was analysed by likelihood ratio test (LRT) and Mutation tester-2 software (Charite, Berlin).

OMIM phenotype

Nemaline myopathy-8 (OMIM#615348) is caused by homozygous of compound heterozygous mutation in the KLHL40 gene (OMIM*615340). This is a severe autosomal recessive muscle disorder characterized by fetal akinesia or hypokinesia, followed by contractures, fractures, respiratory failure, and swallowing difficulties apparent at birth. Most patients die in infancy. The skeletal muscle biopsy shows numerous small nemaline bodies, frequently with virtually no normal myofibrils.

   Discussion Top

There were two cases with affected fetuses described earlier had presented with severely reduced fetal movement, contractures and also associated with cleft palate. Severe nemaline myopathy has been reported with mutation in LMOD3 and nebulin gene. Mutation in LMOD3 gene (OMIM 616165) was reported family history of cleft lip palate with hypertelorism, hypospadias, and developmental delay. There was also MID1 mutation running in the family.[6] In another case report, a healthy family of first cousin couple had two unaffected children but three boys had died. One died neonatally and two died at the age of 6–8 months. The fourth boy diagnosed with nemaline myopathy had rocker bottom feet, cleft palate, undescended testes, and a weak voice. The patient and mother were homozygous for a deletion in exon 184 in nebulin gene that was detected with biopsy.[7] Mutation in KLHL40 gene identified by whole exome sequencing, homozygous, or compound heterozygous mutation in six nemaline myopathy families but without cleft palate.[5] The different genes implicated in causing nemaline myopathy are listed in [Table 1]. In our case, we have identified severe myopathy with cleft palate and identified KLHL40 mutation by targeted exome sequencing. An interactome for proteins involved with cleft lip/palate is given in [Figure 1].
Table 1: Associated genes and functions in nemaline myopathies

Click here to view
Figure 1: Protein association networking in nemaline myopathies generated through STRING

Click here to view

Congenital myopathies are genetically a group of heterogeneous inherited disease of muscles that manifest clinically in early life, infancy, or characterized by distinctive abnormalities on muscle biopsy. The precise histologic diagnosis of congenital myopathies is sometime difficult to make because of overlapping features.[8] A number of genes have been identified by advanced sequencing methods associated with congenital myopathy and till date there is a large gap and additional genes are yet to be discovered.

Most cases of cleft lip palate are involved with combined effect of environmental and genetic factors during the first week of pregnancy. Cleft lip palate is associated with common syndromes such as CHARGE syndrome, Stickler syndrome, van der Woude syndrome, Pierre Robin sequence, intellectual disabilities, Kabuki syndrome, and DiGeorge syndrome.[9] Recent studies suggest that it could be associated with other anomalies. To the best of our knowledge, this is the first report of nemaline myopathy with KLHL40 mutation associated with cleft palate.

Financial support and sponsorship

This work was supported by the Ministry of Science and Technology, New Delhi, India.

Conflicts of interest

There are no conflicts of interest.

   References Top

North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, et al. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord 2014;24:97-116.  Back to cited text no. 1
Ravenscroft G, Laing NG, Bönnemann CG. Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. Brain 2015;138:246-68.  Back to cited text no. 2
Wang CH, Dowling JJ, North K, Schroth MK, Sejersen T, Shapiro F, et al. Consensus statement on standard of care for congenital myopathies. J Child Neurol 2012;27:363-82.  Back to cited text no. 3
Jungbluth H, Sewry CA, Muntoni F. Core myopathies. Semin Pediatr Neurol 2011;18:239-49.  Back to cited text no. 4
Ravenscroft G, Miyatake S, Lehtokari VL, Todd EJ, Vornanen P, Yau KS, et al. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet 2013;93:6-18.  Back to cited text no. 5
Berkenstadt M, Pode-Shakked B, Barel O, Barash H, Achiron R, Gilboa Y, et al. LMOD3-associated nemaline myopathy: prenatal ultrasonographic, pathologic, and molecular findings. J Ultrasound Med 2018;37:1827-33.  Back to cited text no. 6
Wallgren-Pettersson C, Donner K, Sewry C, Bijlsma E, Lammens M, Bushby K, et al. Mutations in the nebulin gene can cause severe congenital nemaline myopathy. Neuromuscul Disord 2002;12:674-9.  Back to cited text no. 7
Nance JR, Dowling JJ, Arbor A, Bönnemann CG. Congenital myopathies: An Update. Curr Neurol Neurosci Rep2015;12:165-74.  Back to cited text no. 8
Setó-Salvia N, Stanier P. Genetics of cleft lip and/or cleft palate: association with other common anomalies. Eur J Med Genet 2014;57:381-93.  Back to cited text no. 9


  [Figure 1]

  [Table 1]

This article has been cited by
1 The anti-androgenic fungicide triticonazole induces region-specific transcriptional changes in the developing rat perineum and phallus
Monica Kam Draskau, Camilla Lindgren Schwartz, Bertrand Evrard, Aurélie Lardenois, Andrew Pask, Frédéric Chalmel, Terje Svingen
Chemosphere. 2022; 308: 136346
[Pubmed] | [DOI]
2 Pediatric Nemaline Myopathy: A Systematic Review Using Individual Patient Data
Briana Christophers, Michael A. Lopez, Vandana A. Gupta, Hannes Vogel, Mary Baylies
Journal of Child Neurology. 2022; 37(7): 652
[Pubmed] | [DOI]
3 Case Report: Prenatal Diagnosis of Nemaline Myopathy
Dongmei Liu, Jiali Yu, Xin Wang, Yang Yang, Li Yu, Shi Zeng, Ming Zhang, Ganqiong Xu
Frontiers in Pediatrics. 2022; 10
[Pubmed] | [DOI]
4 A Korean Case of Neonatal Nemaline Myopathy Carrying KLHL40 Mutations Diagnosed Using Next Generation Sequencing
Yoong-a Suh, Young Bae Sohn, Moon Sung Park, Jang Hoon Lee
Neonatal Medicine. 2021; 28(2): 89
[Pubmed] | [DOI]
5 The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease
Jordan Blondelle, Andrea Biju, Stephan Lange
International Journal of Molecular Sciences. 2020; 21(21): 7936
[Pubmed] | [DOI]


Print this article  Email this article
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (410 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  

   Methods and Results
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded46    
    Comments [Add]    
    Cited by others 5    

Recommend this journal