home : about us : ahead of print : current issue : archives search instructions : subscriptionLogin 
Users online: 360      Small font sizeDefault font sizeIncrease font size Print this page Email this page

    Article Cited by others

ORIGINAL ARTICLE

Clinical nomogram predicting intracranial injury in pediatric traumatic brain injury

Tunthanathip Thara, Duangsuwan Jarunee, Wattanakitrungroj Niwan, Tongman Sasiporn, Phuenpathom Nakornchai

Year : 2020| Volume: 15| Issue : 4 | Page no: 409-415

   This article has been cited by
 
1 Economic impact of a machine learning-based strategy for preparation of blood products in brain tumor surgery
Thara Tunthanathip, Sakchai Sae-heng, Thakul Oearsakul, Anukoon Kaewborisutsakul, Chin Taweesomboonyat, Venkatesh Shankar Madhugiri
PLOS ONE. 2022; 17(7): e0270916
[Pubmed]  [Google Scholar] [DOI]
2 Comparison of intracranial injury predictability between machine learning algorithms and the nomogram in pediatric traumatic brain injury
Thara Tunthanathip, Jarunee Duangsuwan, Niwan Wattanakitrungroj, Sasiporn Tongman, Nakornchai Phuenpathom
Neurosurgical Focus. 2021; 51(5): E7
[Pubmed]  [Google Scholar] [DOI]
3 Application of machine learning to predict the outcome of pediatric traumatic brain injury
Thara Tunthanathip, Thakul Oearsakul
Chinese Journal of Traumatology. 2021; 24(6): 350
[Pubmed]  [Google Scholar] [DOI]
4 Prognostic Impact of the Combination of MGMT Methylation and TERT Promoter Mutation in Glioblastoma
Thara Tunthanathip, Surasak Sangkhathat, Pimwara Tanvejsilp, Kanet Kanjanapradit
Journal of Neurosciences in Rural Practice. 2021; 12(04): 694
[Pubmed]  [Google Scholar] [DOI]

 

Read this article